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ABSTRACT 

 
A quantitative structure property relationship (QSPR) study is developed using Genetic Algorithm (GA) 

/ Multiple Linear Regression (MLR) for modeling the flash points of 173 unsaturated hydrocarbons, using 
theoretical molecular descriptors derived from DRAGON software. The studied dataset was randomly 
separated into two independent subsets: a training set of 139 compounds to build the model and a test set of 
the removed 34 compounds to validate its predictive ability. The selection of a minimum set of meaningful 
descriptors was carried out using Genetic Algorithm in the MOBYDIGS Todeschini software. An MLR model of 4 
descriptors with a high predictive power was developed for the prediction of the flash points of unsaturated 
hydrocarbons.The predictive ability of the obtained model was verified using a set of criteria according to 
Golbraikh and tropsha and its applicability domain was studied using Willians plot. 
Keywords:  Flash point; Unsaturated hydrocarbons; Multiple linear regression; Quantitative structure-property 
relationship; Model prediction. 
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INTRODUCTION 
 

The flash point (FP) is defined as the lowest temperature, corrected to 101.3 k Pa, at which an 
application of an ignition source causes the vapors of the specimen to ignite under specific conditions of a test 
[1-4]. 
 

This parameter gives the knowledge necessary for understanding the fundamental physical and 
chemical processes of combustion. Moreover, it is of importance in practice for safety conditions in the 
storing, the processing and the handling of a given compound. And it is one of the major flammability 
characteristics used to assess the fire and explosion hazards of organic compounds [5]. 
 

The flash point of most compounds can be measured by two currently accepted experimental 
methods, which are the closed cup test and the open cup test [6]. However, for many other compounds, the 
experimental flash point values are scarce and too expensive to obtain. Moreover, it is even more difficult to 
make the experimental determination of the flash point of toxic, volatile, explosive and radioactive 
compounds. Hence, the development of estimation methods which are desirably convenient for predicting the 
flash point is required. 
 

There are many methods for prediction of FP in the literature. Vidal et al. have presented a review of 
the most important methods for the prediction of the flash point [7]. Mainly, prediction methods for this 
property can be categorized as the group contribution method (GCM), the principal component analysis (PCA) 
and the quantitative structure-property relationship (QSPR). 
 

A simple correlation for predicting the flash point of a large data set consisting various types of cyclic 
and acyclic hydrocarbons including the studied compounds where the proposed method was based on the 
number of carbons and hydrogen atoms and some specific molecular moieties, which can easily be used for 
any type of hydrocarbons [8]. 
 

Another method was introduced for the prediction of the flash point of different classes of 
unsaturated hydrocarbons showing that the number of carbons and hydrogen atoms can be used as a core 
function that may be revised by a correcting function. Correcting function contains two correcting terms that 
can be determined on the basis of molecular structure that can be determined on the basis of the molecular 
structure of unsaturated hydrocarbons [9].  
 

The aim of this work is to build a new QSPR model that can be used for predicting flash points of 173 
unsaturated hydrocarbons [9] from their molecular structure. In this work, after obtaining the most statistically 
significant descriptors by means of genetic algorithm (GA) based on variable selection approach, the multiple 
linear regression behavior of these molecular descriptors for predicting flash point of these compounds was 
studied.   

 
MATERIALS AND METHODS 

 
The data set  
 

The experimental flash point dataset was taken from literature [9]. 
 
The set of the studied compounds is formed of different classes of unsaturated hydrocarbons 

including alkenes, alkynes and aromatics. Flash point values are in a range from 137 to 451 K.  The dataset was 
randomly divided into two groups, a training set of 139 compound and a test set of 34 compound. 
 
Descriptor generation  
 

The chemical structure of each compound was sketched on a PC using the Hyperchem program [10] 
and preoptimized using MM+ molecular mechanics method (Polack-Ribiere algorithm). The final geometries of 
the minimum energy conformation were obtained by the semi-empirical PM3 method at a restricted Hartree-
Fock level with no configuration interaction, applying a gradient norm limit of 0.01 k cal .A-1.mol-1 as a stopping 
criterion. 
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The output files exported from Hyperchem were transferred into Dragon software [11], to calculate a 

large number of molecular descriptors on the basis of the geometrical and electronic structure of the 
molecules. Constant values and descriptors found to be correlated pairwise were excluded in a pre-reduction 
step (when there was more than 95 % pairwise correlation, one variable was deleted), and the genetic 
algorithm was applied for variables selection to a final set of 269 descriptor. 
 
Data splitting 
 

In order to check the predictive capability of the proposed model, before model generation the data 
set was randomly split into a training set of 139 compounds from which the model is built and an external test 
set of 34 compounds on which to evaluate its prediction power as it is shown on Table 1. 
 

Table 1:  Names, structures and FP values of the studied set 
 

N° Names FP(K) N° Names FP(K) 

1 Benzene 262 88 2-Heptyne 275 

2* Toluene 280 89 3-Heptyne 257 

3* Ethylbenzene 288 90* 3-Methyl-1-hexyne 268 

4* P-Xylene 300 91 1,7-Octadiyne 296 

5 O-Xylene 303 92 2,6-Octadiene 307 

6 Propylbenzene 303 93 1-Octyne 289 

7 Cumene 304 94 2-Octyne 301 

8 m-Ethyltoluene 311 95* 4-Octyne 291 

9 1,2,3-Trimethylbenzene 324 96* 1,8-Nonadiyne 314 

10* 1,2,4-Trimethylbenzene 321 97 1-Nonyne 306 

11 1,3,5-Trimethylbenzene 317 98 1-Decyne 323 

12 o-Ethyltoluene 312 99 1-Undecyne 338 

13* p-Ethyltoluene 309 100 4-Undecyne 341 

14 Naphthalene 360 101 1-Dodecyne 352 

15 Butylbenzene 331 102 1-Tridecyne 366 

16 1,2,4,5-Tetramethylbenzene 346 103 Cyclobutene 202 

17 2-Ethyl-p-xylene 329 104 Cyclopentene 244 

18* 3-Ethyl-o-xylene 338 105 Cyclohexene 256 

19* 4-Ethyl-m-xylene 330 106 4-Methylcyclopentene 243 

20* tert-Butylbenzene 307 107 Cycloheptene 267 

21 P-Cymene 320 108 4-Methylcyclohexene 272 

22 o-DiEthylbenzene 322 109* 3-Methylcyclohexene 270 

23 m-DiEthylbenzene 324 110 4-Ethylcyclohexene 286 

24 p-DiEthylbenzene 328 111 Ethylene 137 

25 4-Ethyl-1,2-dimethylbenzene 331 112 Propene 165 

26 1-Methylnaphtalene 355 113 Propadiene 177 

27 n-Pentylbenzene 339 114 1,2-Butadiene 197 

28 IsoPentylbenzene 335 115 1,3-Butadiene 197 

29 Pentamethylbenzene 364 116* Butene 194 

30 p-tert-Butyltoluene 321 117 Cis-2-Butene 200 

31 2-Phenyl-2methylbutane 338 118 Isobutylene 197 

32 1-Ethylnaphtalene 380 119 1,2-Pentadiene 233 

33 2-Ethylnaphtalene 377 120 2,3-Pentadiene 235 

34 1,3-Dimethylnaphtalene 382 121 Cis-1,3-Pentadiene 232 

35* 1,2-Dimethylnaphtalene 374 122* 2-Methylbutadiene 225 

36 Hexylbenzene 356 123* Pentene 229 

37 Hexamethylbenzene 377 124 2-Pentene 253 

38 3,5-Dimethyl-tert-butylbenzene 357 125 Cis-2-Pentene 227 

39 1,2,4-Trimethylbenzene 349 126 trans-2-Pentene 225 
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N° Names FP N° Names FP 

40* 1,3,5-Triethylbenzene 354 127 Isopentene 211 

41 1,4-Diisopropylbenzene 354 128 1,4,-Hexadiene 248 

42 m-Diisopropylbenzene 350 129* 2,4-Hexadiene 264 

43 n-Heptylbenzene 368 130 1,5-Hexadiene 246 

44 1,2,3,4-Tetraethylbenzene 367 131 2,3-Dimethyl-1,3-butadiene 251 

45 2-Phenyloctane 373 132 3-Methyl-1,4-pentadiene 239 

46 n-Octylbenzene 380 133 2-Methyl-2,3-pentadiene 255 

47* n-Nonylbenzene 390 134 1-Hexene 253 

48 1,3,5-Triisopropylbenzene 359 135 Cis-2-Hexene 252 

49 Decylbenzene 380 136* Cis-3-Hexene 261 

50 Pentaethylbenzene 386 137 Trans-3-Hexene 261 

51* n-Undecylbenzene 409 138* Isohexene 241 

52 Dodecylbenzene 418 139 2,3-Dimethyl-1-butene 255 

53 1,2,4,5-tetraisopropylbenzene 397 140 2,3-Dimethyl-2-butene 256 

54 1,3,5-Tri-tert-butylbenzene 372 141 3,3-Dimethyl-1-butene 244 

55 Tridecylbenzene 385 142 2-Methyl-1-pentene 241 

56* 1-Methylanthracene 430 143 2-Methyl-2-pentene 246 

57 2-Methylanthracene 431 144 4-Methyl-2-pentene 241 

58 9-Methylanthracene 431 145 3-Methyl-1-pentene 244 

59 1-methylphenanthrene 431 146 Trans-3-Methyl-2-pentene 266 

60 7-isopropyl-1-methylphenanthrene 451 147* 2-Ethyl-1-butene 243 

61 Phenylacetylene 303 148 1,6-Heptadiene 263 

62 Styrene 304 149 1-Heptene 264 

63* 2-Vinyltoluene 320 150 Cis-2-Heptene 265 

64 3-Vinyltoluene 324 151 Trans-2-Heptene 267 

65 3-Phenyl-1-propene 310 152 Trans-3-Heptene 266 

66 beta-Methylstyrene 333 153 2-Methyl-1-hexene 267 

67* Cis-1-Propenylbenzene 325 154* 4-Methyl-1-hexene 258 

68 Isopropenylbenzene 313 155* 2-Ethyl-1-pentene 263 

69* trans-1-phenyl-1-propene 331 156* 2,4-Dimethyl-2-pentene 264 

70 m-Divinylbenzene 338 157 2,3,3-Trimethyl-1butene 256 

71 p-Divinylbenzene 337 158* Cis-5-Methyl-2-Hexene 268 

72 1-Butynylbenzene 341 159 Trans-5-Methyl-2-Hexene 268 

73 3-Ethylstyrene 333 160 Trans-3-Octene 282 

74 4-Ethylstyrene 335 161 Trans-4-Octene 281 

75 2,4-dimethyl-1-vinylbenzene 333 162 Cis-4-Octene 294 

76 Acetylene 155 163* 1,8-Nonadiene 299 

77 Propyne 186 164 2-Ethyl-1-hexene 279 

78 1-Pentyne 230 165 1-Nonene 298 

79 2-Pentyne 253 166* 1-Undecene 336 

80 3-Methyl-1-butyne 221 167 Dodecene 351 

81 1-Hexyne 252 168 2-Methyl-1-undecene 345 

82* 2-Hexyne 263 169 1-Tridecene 352 

83 3-Hexyne 259 170 1-Tetradecene 383 

84 3,3-Dimethyl-1-butyne 239 171 1-Pentadecene 386 

85 4-Methyl-1-Pentyne 249 172 1-Hexadecene 402 

86 1,6-Heptadiyne 282 173 1-Heptadecene 408 

87 1-Heptyne 263    

      

 
* compounds of the test set . 
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Model development and validation 
 

Once the molecular descriptors are generated, multiple linear regression (MLR) analysis and variable 
selection were performed by the software Mobydigs [12] using the Ordinary Least Square (OLS) regression 
method and Genetic Algorithm _Variable Subset Selection (GA-VSS) [13]. 
 

The outcome of the application of the genetic algorithms is a population of 100 regression models, 
ordered according to their decreasing internal predictive performance, verified by Q2.First of all, models with 
1-2 variables were developed by the all-subset-method procedure in order to explore all the low dimension 
combinations. The number of descriptors was subsequently increased one by one, and the new models were 
formed. The best models are selected at each rank, and the final model must be chosen from among them. 
This has to be sufficiently correlated and at the same time, protect against any over parametrisation, which 
would lead to a loss of predictive power for molecular outside training set. From a statistical view point the 
ratio of the number of samples (n) to the number of descriptors (m) should not be too low. Usually, it is 

recommended that n / m 5  [14]. The GA was stopped when increasing the model size did not increase the 

Q2 value to any significant degree.  
 

Particular attention was paid to the collinearity of the selected molecular descriptors by applying the 
QUIK (Q Under Influence of K) rule [15] a necessary condition for the model validity. Acceptable models are 
only with a global correlation of [X+Y] block (Kxy) greater than the global correlation of the X block (Kxx) 
variable, X being the molecular descriptors and Y the response variable. Therefore, when there were models of 
similar performance, those with higher ∆ K (Kxy-Kxx) were selected and further verified. 
 

The goodness of fit of the calculated models were assessed by the means of the multiple 

coefficient
2R , and the standard deviation error in calculation (SDEC). 

 

n
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(1) 

 
Cross validation techniques allow the assessment of internal predictivity (bootstrap) in addition to the 

robustness of model (
2

LOOQ  cross validation). 

 
Cross validation methods consist in leaving out a given number of compounds from the training set 

and rebuilding the model, which is then used to predict the compounds left out .This procedure, is repeated 
for all compounds of the training set, obtaining a prediction for everyone. If each compound is taken away 
once each time the cross validation procedure is called leave-one-out technique (LOO technique). An LOO 

correlation coefficient, generally indicated with
2Q , is computed by evaluating the accuracy of these “test” 

compounds prediction. 
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The “hat” of the variable y, as is the usual statistical notation, indicates that it is a predicted value of 

the studied property, and the sub index “i/i” indicates that the predicted values come from the model built 
without the predicted compound. 
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The predictive residual of squares (PRESS) measures the dispersion of the predicted values. It is used 

to define 
2Q and the standard error in prediction (SDEP). 

 

SDEP= PRESS/n                                               (3) 

 

A value of 
2Q   0.5  is generally considered satisfactory, and a value greater than 0.9 is excellent 

[16,17].  However, studies have indicated that while 
2Q  is a necessary condition for high predictive power of a 

model, is not sufficient. 
 

In bootstrap validation technique K n-dimensional groups are generated by a randomly repeated 
selection of n-objects from the original data set. The model obtained on the first selected objects is used to 

predict the values for the excluded sample, and then 
2Q is calculated for each model. The bootstrapping was 

repeated 5000 times for each validated model [18]. 
 

Obtaining a robust model does not give real information about its prediction power .This is evaluated 
by predicting the compounds included in the test set. 
 

The external Q2ext for the test set is determined [19] with the equation (4): 
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Where iy and /
ˆ

i iy are, respectively, the measured and predicted (over the prediction set) values of 

the dependent variable, and y  the averaged value of the dependent variable for the training set. trn and 

extn  are the number of objects in the external set, respectively. 

 

Other useful parameters are 2R , calculated for the validation chemicals by applying the model 

developed on the training set, and an external standard deviation error of prediction (SDEPext), defined as: 
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(5) 

 

Where the sum runs over the test set objects ( extn ). 

 
According to [20] a QSPR model is successful if it satisfies several criteria as follows: 

 

ext

2

CVR 0.5
                                                       

(6) 

2r 0.6                                                                  (7) 

    
   2 2 2 2 2 ' 2r r 0 / r r r 0 / r 0.1   
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  0.85 k 1.15 or 0.85 k 1.15            (9) 
2 2

0Ab = 0.3 r r
                                     

(10) 

Here: 
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Where 
2r  is the correlation between the calculated and the experimental values in the test set; 

2r  

(calculated versus observed values) and 2r ( observed versus calculated values)are the coefficients of 

determination; k  and k  are slopes of regression lines through the origin of calculated versus observed end 

observed versus calculated, respectively 0r

iy , 0r

iy  are defined as  0r

i iy ky  and 0r

iy k y and the 

summations run over the test set. 
 
QSPR model Applicability Domain (AD) 
 

The applicability domain ability (AD) [19,17] is a theoretical region in the space defined by the 
descriptors of the model and the method response, for which a given QSPR should make reliable predictions. 
In this work, the structural AD was verified by the leverage (hii) approach [21]. 
 

The warning leverage h* is, generally, fixed at 3(m+1)/n, where n is the total number of samples in 
the training set and m is the number of descriptors involved in the correlation. 
 

The presence of both the response outliers (Y outliers) and the structurally influential compounds (X 
outliers) was verified by the Williams plot [22].The plot of standardized residuals versus leverage values. 
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RESULTS AND DISCUSSION 
 

Several acceptable MLR models of different dimensions, based on various descriptors, were obtained. 
The best one, taking into account the parsimony principal regarding the complexity of the models, is a model 
of 4 descriptors with a high predictive power.  
 
The equation (18) the optimal model is given as: 
 

FP   235 +  12.5 nSK   416 FDI  -  83.3 Mor26v  +  19.4 R5u         (18) 

 
Here, nsK is a constitutional descriptor (block1); representing the number of non-hydrogen atoms 

[11].  
 

FDI is folding degree index; belongs to the list of geometrical descriptors calculated by dragon 
(block12). Geometrical descriptors are defined in several different ways but always derived from the three-
dimensional structure of the molecule. Generally, geometrical descriptors are calculated either on some 
optimized molecular geometry obtained by the methods of the computational chemistry or on crystallographic 
coordinates. The folding degree index is the largest eigen value of the distance/distance matrix, normalised 
dividing it by the number of atoms nAT. This index tends to one for linear molecules (of infinite length) and 
decreases in correspondence with the folding of the molecule. Thus, it can be thought of as a measure of the 
folding degree of the molecule because it indicates the degree of departure of a molecule from strict linearity 
[11].  
 

Mor26v is a 3D-Morse descriptor (block 14); 3D-Molecule Representation of Structures based on 
Electron diffraction) descriptors are based on the idea of obtaining information from the 3D atomic 
coordinates by the transform used in electron diffraction studies for preparing theoretical scattering curves. 
The following expression is used for 3D-MoRSE descriptor calculation: 
 

nAT 1 nAT
ij

i j

i 1 j i 1 ij

sin(s.r )
 Morsw = W  W    

s.r



  

 
                 

(19) 

 
Where Morsw is the scattered electron intensity, w is an atomic property, rij are the interatomic 

distances and nAT is the number of atoms. The term s represents the scattering in various directions by a 
collection of nAT atoms. 
 

In order to obtain uniform length descriptors, the intensity distribution is made discrete, calculating 
its value at a sequence of evenly distributed values; in particular, in DRAGON, it is assumed that s takes integer 
values in the range 0 – 31 [11]. 
 

R5u (R autocorrelation of lag 5 / unweighted), is a GETAWAY descriptor (block16). GETAWAY 
descriptors have recently been proposed as chemical structure descriptors derived from a new representation 
of molecular structure [11]. 
 

The obtained statistical parameters are reported in table 2. 
 

Table 2: Statistical parameters of the developed model 

 

trn  extn  2

LOOQ (%)  
2R (%)  

2

adjR (%)  
2

extQ  
2

bootQ  

139 34 97.11 97.41 97.34 97.71 96.96 

F
 

SDEC  SDEP  
extSDEP  Kxy  Kxx  s  

1261.62 10.09 10.66 9.50 49.77 34.57 10.28 
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The adjusted 
2 2( )adjR R is a better measure of the proportion of variance in the data explained by 

the correlation than
2R , because

2R is somewhat sensitive to changes in the number of samples of the 
training set and the number of descriptors involved in the correlation. 
 

Statistical parameters show that the model (Eq.18) established a strong correlation between the 
selected variables and the studied property, characterized by an excellent coefficient of determination 

(
2 97.41%R ) that explains around 97.41% of data variation, in addition to a very large value of the Fisher 

F (F=1261.62), which indicates the excellence ability of the model in the prediction of FP values, and a good 

standard error (s=10.28). Equation (18) presents an  
2

adjR  (%) =97.34 indicating excellent agreement between 

correlation and variation of the data. 
 

The small difference between 
2R and

2QLOO informs about the robustness of the model. The cross-

validation prediction coefficient illustrates the reliability towards the elimination of the model focusing on the 

sensitivity towards the elimination of any 5 data. The value of 
2

bootQ  (%) =96.96) confirms both the internal 

predictability and stability of the model. 
 

A visual comparison of the predicted results of the new correlation with the experimental data is also 
shown in the plot of observed versus predicted values of FP (Figure 1) for the training and test sets confirmed 
that a linear model with very good fitting can be used to predict our studied property . 
 
 

 
 

Figure 1: Experimental versus Predicted FP for the training and test sets. 
 

Figure 2 represents the graph of statistical coefficients 
2Q and 

2R which allows comparing the 

results for randomized patterns (sign +) to the starting model (triangle) which is the real model. It is clear that 
the flash points statistics obtained for the modified vectors are smaller than those of the real QSPR model, to 
ensure that a real structure / property (FP) relationship has been established (Figure 2). 
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Figure 2: Randomization test associated to previous QSPR model 
 

 
Signs + represent the randomly ordered flash points, and the triangle corresponds to the real flash 

point. The statistics for the modified FP vectors are clearly lower than the real QSPR model. Q 2 values are 
lower than 10 %, and for the major part one obtains even Q2< 0 for random models symbolized by sign +. This 
ensures that a real structure –property relationship has been found out. 
 

Based on a previously described procedure [23], the relative contribution of the four descriptors to 
the model were determined as follow:  nsk (45.82%) > FDI (18.55%) > Mor26v (18.34) > R5u (17.29). As it is 
seen the nsk contribution is greater than FDI , Mor26v and R5u contributions , while the difference in the 
descriptor contribution is not significant, indicating that the nsk (number of carbon atoms) descriptor is more 
necessary in generating the predictive model than the other descriptors as seen on figure 3 . 
 
 

 
 

Figure 3: Relative contribution of the selected descriptors in the MLR model 
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The following statistical parameters according to Tropsha et al. reported in table 3, obtained for the 
external test set, check the generality accepted conditions which demonstrate the prediction power of the 
present model.  

 

Table 3: Statistical parameters of Tropsha et al. 

 

ext

2

CVR  
2r  2

0r  
' 2

0r  T1  

0.9668 0.968 0.9996 0.9993 -0.0326 

T2  k  k   Ab  

-0.0324 1.0035 0.9955 0.0313  

 
2  0.9668 0.5 

extCVR  ;
2  0.968 0.6 r  ;   

2

0r  0.9996
 

' 2

0r  0.9993        ; T1 = -0.0326    <0.1; T2 = -0.0324  < 0.1  

0.85 <  k  =  1.0035 <1.15 ;  0.85 <  k  =  0.9955  <1.15  

2 2

0r r  = 0.0313  <0.3 
 

 
The applicability domain is analyzed using the Williams plot, presented in figure 4 shows standardized 

residuals in prediction plotted against leverage (Hat diagonal) values of each compound used to evaluate the 
applicability domain (AD) of a QSPR model suggested by [24] . 
 

 
The plot makes possible to verify the presence of the outliers objects which are compounds with 

standardized residual greater than 3 standard deviation units and 9 compounds very influential in the 
determination of the model parameters which is the compounds with leverage greater than 

trh*=3(m+1)/n = 0.1079 , where h* is the warning leverage or the critical value (Figure 4) . 

 

 
 

Figure 4: The Williams plot 
 

 
As it is seen on figure 4 the only outlier object is Tridecylbenzene from the training set with a high FP 

value and considered as flammable substances. This compound is out of the AD of the QSPR model. 
 

Nine compounds (Hexamethylbenzene , 1,2,4,5-Tetraisopropylbenzene, Ethylene , Acetylene, 2-
Methylanthracene, 9-Methylanthracene, 7-Isopropyl-1-methylphenanthrene, 1,3,5-Tri-tert-butylbenzene ) 
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from the training set  and one object (1-Methylanthracene) from the test set, are influential objects with Hat 
values greater than the critical Hat value , but they belongs to the AD of the model. 
 

CONCLUSION 
 

A QSPR model for predicting flash points for 173 unsaturated hydrocarbons was established after 
applying successive steps beginning from the molecular structure generation to the model generation and the 
statistical analysis. 
 

The obtained results ensure that the four molecular descriptors explain successfully the studied 

property which is the flash point. High correlation coefficient
2R 0.9741 , high 

2

extQ 0.9771  and the 

low values of the prediction error (SDEP = 10.66 and SDEPext = 9.50).confirm the predictive ability of the 
obtained model. 
 

The results showed that the predicted values of flash points agreed with the experimental values 
satisfactorily which can sometimes approach the accuracy of experimental flash point determination .Thus 
this QSPR model using MLR can be successfully used to estimate flash points for new organic compounds or 
for other unsaturated hydrocarbons for which experimental values are unknown. Furthermore, this work is 
of assistance to the further study on other flammability characteristics, such as auto ignition temperature 
and flammability limits, in order to predict the risks of environmental pollution. 
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